755 research outputs found

    MOE11 Emittance Growth from the Thermalization of Space-Charge Nonuniformities

    Get PDF
    Beams injected into a linear focusing channel typically have some degree of space-charge nonuniformity. In general, injected particle distributions with systematic charge nonuniformities are not equilibria of the focusing channel and launch a broad spectrum of collective modes. These modes can phase-mix and have nonlinear wave-wave interactions which, at high space-charge intensities, results in a relaxation to a more thermal-like distribution characterized by a uniform density profile. This thermalization can transfer self-field energy from the initial space-charge nonuniformity to the local particle temperature, thereby increasing beam phase space area (emittance growth). In this paper, we employ a simple kinetic model of a continuous focusing channel and build on previous work that applied system energy and charge conservation quantify emittance growth associated with the collective thermalization of an initial azimuthally symmetric, rms matched beam with a radial density profile that is hollowed or peaked. This emittance growth is shown to be surprisingly modest even for high beam intensities with significant radial structure in the initial density profile.Comment: Paper MOE11, XX International Linac Conference, Monterey, CA 21-25 August 2000 3 pages, 3 figure

    Optimizing Beam Transport in Rapidly Compressing Beams on the Neutralized Drift Compression Experiment - II

    Full text link
    The Neutralized Drift Compression Experiment-II (NDCX-II) is an induction linac that generates intense pulses of 1.2 MeV helium ions for heating matter to extreme conditions. Here, we present recent results on optimizing beam transport. The NDCX-II beamline includes a 1-meter-long drift section downstream of the last transport solenoid, which is filled with charge-neutralizing plasma that enables rapid longitudinal compression of an intense ion beam against space-charge forces. The transport section on NDCX-II consists of 28 solenoids. Finding optimal field settings for a group of solenoids requires knowledge of the envelope parameters of the beam. Imaging the beam on scintillator gives the radius of the beam, but the envelope angle dr/dz is not measured directly. We demonstrate how the parameters of the beam envelope (r, dr/dz, and emittance) can be reconstructed from a series of images taken at varying B-field strengths of a solenoid upstream of the scintillator. We use this technique to evaluate emittance at several points in the NDCX-II beamline and for optimizing the trajectory of the beam at the entry of the plasma-filled drift section

    The Marine Nature of Nuwuk Lake and Small Ponds of the Peninsula of Point Barrow Alaska

    Get PDF
    Discusses a score or more ponds, some transient, some persistent, on this narrow gravel spit, their location, nature, salinity and temperature; their biotas, marine and fresh-water, are outlined. Nuwuk Lake, the largest water body of the locality, approx. 600 ft long, max. depth 18.5 ft, is treated in some detail: its bottom, its formation by converging currents of the Bering and Chukchi Seas, ice conditions, temperature, salinity and O2-content. The biotas: euryhaline, reduced shallow-sea fauna are dealt with and the organisms collected during 1952-1960 are tabulated. Comparison is made with the few halocline lakes known in northern Russia and Scandinavia, notably Mogil'noye on Kil'din Island

    Short-Pulse, Compressed Ion Beams at the Neutralized Drift Compression Experiment

    Full text link
    We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory, with 1-mm beam spot size within 2.5 ns full-width at half maximum. The ion kinetic energy is 1.2 MeV. To enable the short pulse duration and mm-scale focal spot radius, the beam is neutralized in a 1.5-meter-long drift compression section following the last accelerator cell. A short-focal-length solenoid focuses the beam in the presence of the volumetric plasma that is near the target. In the accelerator, the line-charge density increases due to the velocity ramp imparted on the beam bunch. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including select topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Below the transition to melting, the short beam pulses offer an opportunity to study the multi-scale dynamics of radiation-induced damage in materials with pump-probe experiments, and to stabilize novel metastable phases of materials when short-pulse heating is followed by rapid quenching. First experiments used a lithium ion source; a new plasma-based helium ion source shows much greater charge delivered to the target.Comment: 4 pages, 2 figures, 1 table. Submitted to the proceedings for the Ninth International Conference on Inertial Fusion Sciences and Applications, IFSA 201

    High-Resolution Image Reconstruction from a Sequence of Rotated and Translated Frames and its Application to an Infrared Imaging System

    Get PDF
    Some imaging systems employ detector arrays that are not sufficiently dense to meet the Nyquist criterion during image acquisition. This is particularly true for many staring infrared imagers. Thus, the full resolution afforded by the optics is not being realized in such a system. This paper presents a technique for estimating a high-resolution image, with reduced aliasing, from a sequence of undersampled rotated and translationally shifted frames. Such an image sequence can be obtained if an imager is mounted on a moving platform, such as an aircraft. Several approaches to this type of problem have been proposed in the literature. Here we extend some of this previous work. In particular, we define an observation model that incorporates knowledge of the optical system and detector array. The high-resolution image estimate is formed by minimizing a regularized cost function based on the observation model. We show that with the proper choice of a tuning parameter, our algorithm exhibits robustness in the presence of noise. We consider both gradient descent and conjugate-gradient optimization procedures to minimize the cost function. Detailed experimental results are provided to illustrate the performance of the proposed algorithm using digital video from an infrared imager

    Using the ionospheric response to the solar eclipse on 20th March 2015 to detect spatial structure in the solar corona

    Get PDF
    Long-term variability has previously been observed in the relative magnitude of annual and semi-annual variations in the critical frequency (related to the peak electron concentration) of the ionospheric F2 layer (foF2). In this paper we investigate the global patterns in such variability by calculating the time varying power ratio of semi-annual to annual components seen in ionospheric foF2 data sequences from 77 ionospheric monitoring stations around the world. The temporal variation in power ratios observed at each station was then correlated with the same parameter calculated from similar epochs for the Slough/Chilton data set (for which there exists the longest continuous sequence of ionospheric data). This technique reveals strong regional variation in the data, which bears a striking similarity to the regional variation observed in long-term changes to the height of the ionospheric F2 layer. We argue that since both the height and peak density of the ionospheric F2 region are influenced by changes to thermospheric circulation and composition, the observed long-term and regional variability can be explained by such changes. In the absence of long-term measurements of thermospheric composition, detailed modelling work is required to investigate these processes

    The Ursinus Weekly, January 16, 1903

    Get PDF
    Philosophical and psychological associations • American economic and historical associations • Meeting of the Modern Language Association • Meeting of scientists • Groups organize • Monday Night Club • Societies • Among the colleges • YMCA • Philadelphia letter • Personals • L. C. Royer, A. B., deadhttps://digitalcommons.ursinus.edu/weekly/3070/thumbnail.jp

    Characteristics of Evoked Potential Multiple EEG Recordings in Patients with Chronic Pain by Means of Parallel Factor Analysis

    Get PDF
    This paper presents an alternative method, called as parallel factor analysis (PARAFAC) with a continuous wavelet transform, to analyze of brain activity in patients with chronic pain in the time-frequency-channel domain and quantifies differences between chronic pain patients and controls in these domains. The event related multiple EEG recordings of the chronic pain patients and non-pain controls with somatosensory stimuli (pain, random pain, touch, random touch) are analyzed. Multiple linear regression (MLR) is applied to describe the effects of aging on the frequency response differences between patients and controls. The results show that the somatosensory cortical responses occurred around 250 ms in both groups. In the frequency domain, the neural response frequency in the pain group (around 4 Hz) was less than that in the control group (around 5.5 Hz) under the somatosensory stimuli. In the channel domain, cortical activation was predominant in the frontal region for the chronic pain group and in the central region for controls. The indices of active ratios were statistical significant between the two groups in the frontal and central regions. These findings demonstrate that the PARAFAC is an interesting method to understanding the pathophysiological characteristics of chronic pain
    corecore